Science-Based Vegetative Designs Using Engineering Specifications

Jennifer M. Patterson, P.H. George W. Annandale, D.Eng., P.E., D.WRE, F.ASCE Randy Mandel

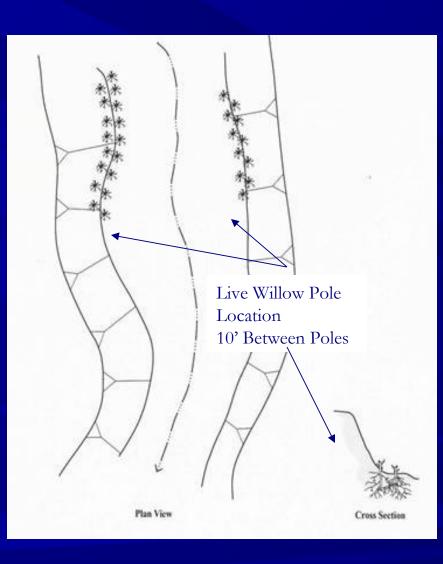
Outline

Introduction Methodology Examples - Soil Parameters - Hydraulics - Planting Plans/Vegetative Parameters Results

Science-Based Bio- and Bio-Technical Engineering

Bioengineering – "soft" design incorporating only vegetation

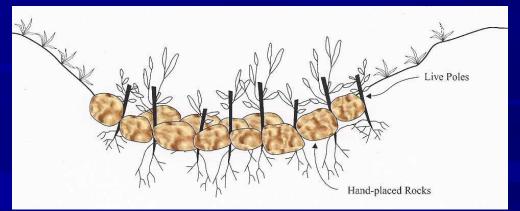
Bio-technical engineering – "medium" design incorporating man-made structures with vegetation


"Hard" engineering – only man-made structures

Introduction

Methodology

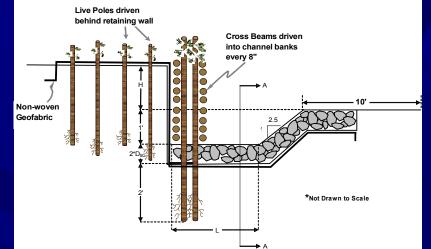
Bioengineering



Introduction

Methodology

Bio-technical Engineering



Introduction

Methodology

Typical Profile Along Centerline of Biotechnical Retaining Wall*

Examples

Science-Based Bio- and Bio-Technical Engineering

Combine Geomorphology (i.e. the Science) with Engineering Practices Conduct geomorphic assessment Use your experience in known system Allows confidence in an unknown system Calculate EROSION THRESHOLD Specify root-bulb dimensions for planting plans

Introduction

Methodology

Examples

Bioengineering?

Introduction

Methodology

Bioengineering?

Introduction

Methodology

Erodibility Index Method (EIM) (Annandale 1995)

$$K_{h} = M_{s} K_{b} K_{d} J_{s}$$

K_hunits of stream power (kW/m²)

Calculate river's stream power (kW/m²): $P_a = Velocity * shear stress$ $P_a = 7.853\rho(\tau_w/\rho)^{(1.5)}$ (Annandale 2006)

■ Kh > P_a, no erosion Introduction Methodology

Examples

Testing

Based on 137 field observations (empirical equation) Physical Model at CSU – reticulated blocks for dam foundation erosion Physical Model at CSU – silt-sized particles in reservoir Field Installations – willow-wattle check dam, bed and bank protection

Introduction

Methodology

Erodibility Index Method (EIM) (Annandale 1995) $K_{h} = M_{s} * K_{h} * K_{d} * J_{s}$

KEY PARAMETERS FOR GRANULAR SOILS: Ms: consistency + geologic pick (Very loose, Crumbles very easily when scraped with geologic pick = 0.02)

Kd: friction angle (32° for quartz sand)

Methodology

Method

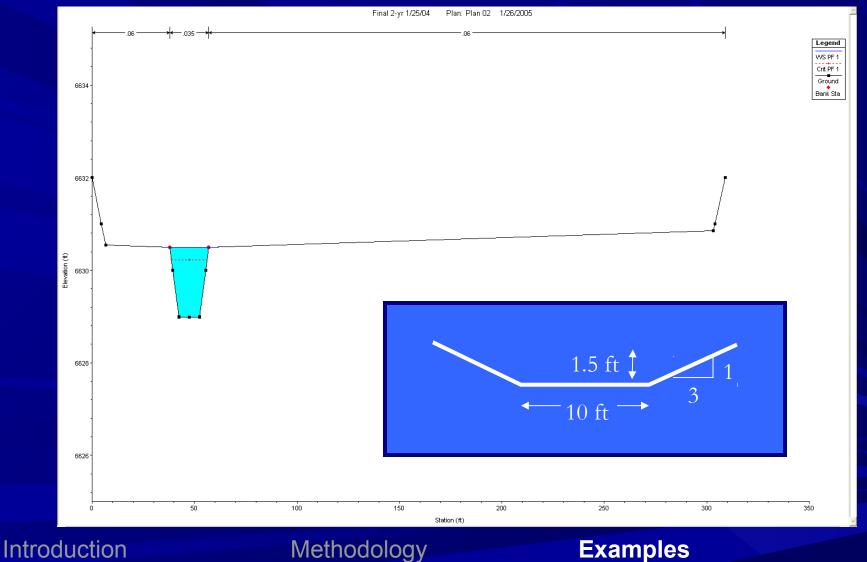
Calculate Erosion Threshold Calculate Stream Power Compare Define Necessary Root-Bulb Dimensions OR Define Bio-Technical Engineering OR Define Hard Engineering

Introduction

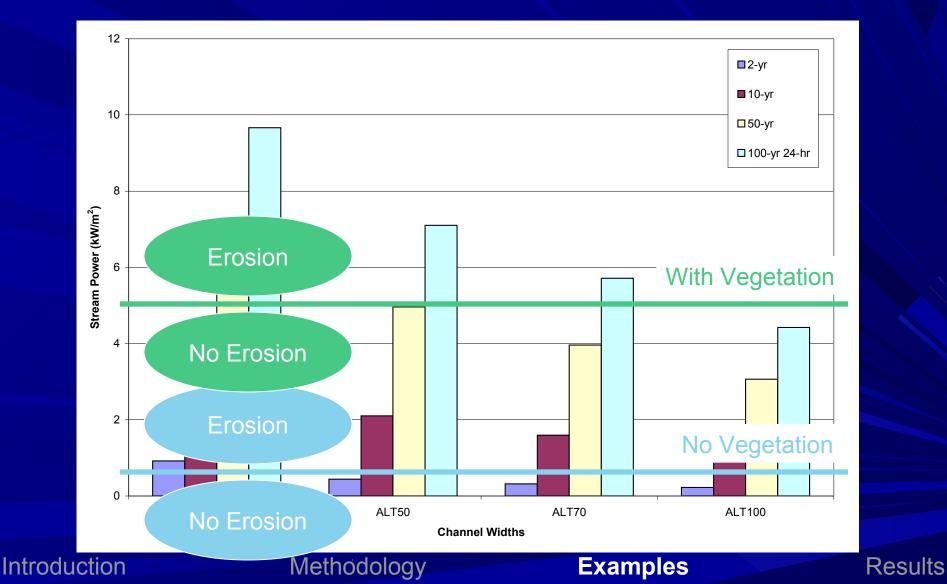
Methodology

Examples

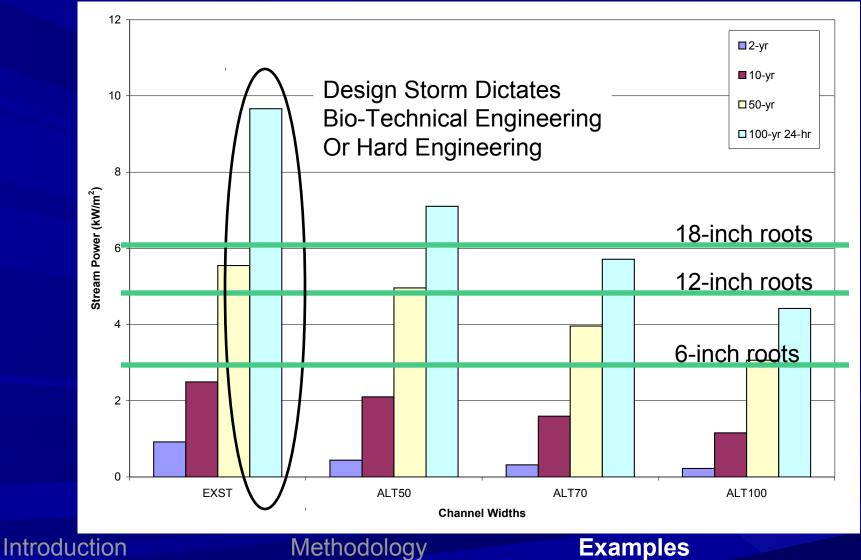
Calculate Erosion Threshold $K_h = M_s * K_b * K_d * J_s$


Must be fibrous root system

Introduction


Methodology

Examples


Calculate Stream Power

Compare

Define Root Bulb

Application for Bio-Technical Engineering

 $K_{h} = M_{s} K_{b} K_{d} J_{s}$

Introduction

Methodology

Examples

Example Design Application for Bioengineering

Unit Flow		Material				
	Slope	<u>Very</u> <u>Soft</u> Clay	<u>Soft</u> <u>Clay</u>	<u>Firm</u> <u>Clay</u>	<u>Stiff</u> <u>Clay</u>	<u>6" ripra</u>
q=2 cfs/ft	0.2%					
	0.6%					
	1.0%					
	1.5%					
	2.0%					
	2.5%					
	3.0%					
q=4 cfs/ft	0.2%					
	0.6%					
	1.0%					
	1.5%					
	2.0%					
	2.5%					
	3.0% 0.2%					
q=6 cfs/ft						
	0.6% 1.0%					
	1.5%					
	2.0%					
	2.5%					
	3.0%					
q=8 cfs/ft	0.2%					
	0.6%					
	1.0%					
	1.5%					
	2.0%					
	2.5%					
	3.0%					
q=10 cfs/ft	0.2%					
	0.6%					
	1.0%					
	1.5%					
	2.0%					
	2.5%					
	3.0%					
				ļ		erosion
				Key:		no erosion

Introduction

Methodology

Examples

Introduction

Methodology

Introduction

Methodology

